Description
Chapter 5: PumpsRules of Thumb for Chemical Engineers, 5th Edition by Stephen Hall This Excel workbook includes Visual Basic for Application function subroutines. Macros must be enabled for them to work. Problem Statement: Create a System Curve and Pump Curves at 3600 rpm Inputs Pumped liquid Temperature US Units Water 86.0 F Head pressure Discharge pressure Liquid height above datum Pump suction height above datum Pump discharge height above datum Flow rate Suction pipe inside diameter Equivalent length of suction pipe Discharge pipe inside diameter Equivalent length of discharge pipe Roughness 0.0 0.0 12.0 1.5 23.0 180,000.0 4.0 27.0 3.0 150.0 0.00015 psig psig ft ft lb/h in ft in ft ft Output Suction Pipe - Line 215 Reynolds Number Friction Factor Pressure Drop due to friction 349,636 0.0178 0.79 psi Discharge Pipe - Line 216 Reynolds Number Friction Factor Pressure Drop due to friction 469,211 0.0184 19.79 psi Vapor Pressure Viscosity Density NPSH available Head pressure Fluid pressure Friction loss Vapor pressure reduction Total Dynamic Head Suction Pressure Head pressure Fluid pressure Friction loss Net Suction Pressure 0.62 psia 0.81 cP 62.56 lb/ft3 33.9 ft fluid 10.5 (1.8) (1.4) 41.1 ft fluid 33.9 10.5 (1.8) 42.5 ft fluid ft fluid ft fluid ft fluid Primary Input Variable Discharge Head pressure Fluid pressure Friction loss Net Discharge Pressure 33.9 21.5 45.6 101.0 Differential Pressure (TDH) 58.42 ft fluid ft fluid ft fluid ft fluid ft fluid To construct a system curve, calculate the TDH at a number of flow rates then plot on a Scatter Chart This can be done by replicating the column of inputs and calculations in Column D (or Column G) several times, ea Or, a simple macro can perform the task, shown below Flow Rate kg/h 5,000 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 110,000 120,000 130,000 140,000 150,000 TDH m fluid System Curve 60 50 TDH, m fluid 40 30 20 3 3 4 5 7 9 12 15 18 22 26 31 36 42 48 55 Flow Rate lb/h 25,000 50,000 75,100 100,200 125,200 150,300 175,400 180,500 200,500 220,500 240,500 260,500 280,500 300,500 320,500 340,500 20 10 - 20.000 80.000 140. kg/h 100.000 Flow Rate.000 120.000 .000 60.000 40. 0 80.4 4.0 100.758 0.gauge kPa .6) m fluid 14.0 0.4 m fluid 4.0000457 kPa .gauge m m m kg/h mm m mm m m 353.0185 144.3 .8 m fluid m fluid m fluid m fluid m fluid 10.800.81 mPa-s 992.26 kPa 0.0 (0.5 75.0179 6.4) 13.5 m fluid (0.61 kg/m3 10.09 kPa 4.0 8.818 0.SI Units Water 30.6) (0.5) 7.5 (0.0 45.25 kPa 471.0 C 4. each with a different flow rate.5 6 gpm TDH 50 107 130 151 100 105 127 149 150 103 124 147 200 100 120. 3560 rpm Impeller 5 5.45 m fluid n a Scatter Chart or Column G) several times.5 14.8 32.5 144 250 96 116 141 300 89 110 136 350 81 104 127 400 71 95 118 442 60 86 109 475 76 100 512 89 550 System Curve 180 TDH.4 7.7 m fluid m fluid m fluid m fluid 0. Size 3x4-7.283951 18.10. ft fluid 120 60 . TDH TDH Flow Rate ft fluid reduced Leq gpm 12 12 50 15 14 100 20 18 150 26 23 200 34 30 250 44 38 300 56 47 350 58 49 360 69 58 400 81 67 439 94 77 479 108 89 519 123 101 559 140 114 599 157 128 639 176 143 679 Goulds Pumps Model 3196. ft fluid 140. gpm 500 .000 Control Valve Pressure Drop 60 Equiv Length reduced 20% 0 0 100 200 300 400 Flow Rate.60 0 160.000 0 100 200 300 400 500 Flow Rate.5 in 6 in 5.5 in 120 5 in TDH. gpm System and Pump Curves ANSI Size 3x4-7 at 3560 rpm 180 6. . 5 171 170 169 167 164 159 152 143 132 123 112 100 Efficiency 62% gpm TDH Operating Point 67% gpm 70% TDH gpm TDH gpm 360 270 260 275 300 345 400 450 500 200 170 125 100 78 76 80 88 323 313 345 375 412 450 500 550 200 162 115 101 100 105 118 132 365 360 358 385 400 425 475 530 190 180 160 138 133 130 135 154 System and Pump Curves ANSI Size 3x4-7 at 3560 rpm 180 62% 120 TDH.6. 3560 rpm 60 67% . ft fluid 3x4-7. gpm .60 0 600 700 800 0 100 200 300 Flow Rate.5 in 67% 6 in 5.5 in 120 TDH. Flow 9. gpm System and Pump Curves ANSI Size 3x4-7 at 3560 rpm 180 62% 6. ft fluid 5 in Min.5 ft 10 ft 11 ft 60 Equiv Length reduced 20% 500 600 700 0 0 100 200 300 Flow Rate. . 0651 150.186 126.8 98.0279 176.5 6 6.4896 143.0622 102.6676 347.6 107.8981 140.71769 105.375" impeller 5 5.3085 164.6 12.9974 140.7551 360 96.3 62.38778 89.3 85.5 104.5 83.2937 .7298 154.9253 122.Operating Point TDH 80 stem and Pump Curves NSI Size 3x4-7 at 3560 rpm 67% 70% 5.2147 129.3892 181.3 13.3 13.9 120.4 10.1 97.1929 115.8312 119.5 gpm TDH Power 0 123.9 112.8 72 14.8303 463.30395 75.0744 231.43645 117.33153 100.9 8. gpm 500 600 700 . gpm stem and Pump Curves NSI Size 3x4-7 at 3560 rpm 67% 70% 25 hp 11 ft 20 hp 12 ft 15 hp 14 ft Equiv Length reduced 20% 300 400 Flow Rate.400 500 600 700 800 Flow Rate. . 1 (0.1 48.06) 0.5 64.5 Suction length = 19 ft. discharge length = 120 ft 54.17) (0.Sensitivity All at Flow Rate = 180000 lb/h Case Base Remove piping contingency Reduce tank level to 0 Tank level 0 with contingency TDH Note 58.10 . . . Minimum Flow gpm Horsepower 15 hp gpm TDH TDH 87 113 105 176 170 250 300 350 400 450 500 550 20 hp gpm 172 140 125 111 98 87 76 67 25 hp gpm TDH 270 350 450 570 184 157 121 77 TDH 400 450 500 600 176 158 137 100 . . . 5 ft gpm TDH 170 200 250 270 10 ft gpm 102 125 163 182 11 ft gpm TDH 250 300 350 94 135 195 12 ft gpm TDH 330 360 400 438 84 103 142 188 14 ft gpm TDH 380 415 440 460 476 490 79 100 120 140 160 180 430 470 510 540 575 .NPSH required 9. . . TDH 64 80 104 128 180 . 0184 19.0 0.0 150.0 F Head pressure Discharge pressure Liquid height above datum Pump suction height above datum Pump discharge height above datum Flow rate Suction pipe inside diameter Equivalent length of suction pipe Discharge pipe inside diameter Equivalent length of discharge pipe Roughness 0.8) (1.79 psi Discharge Pipe .0 0.5 (1.0 4.5 23.62 psia 0.5 ft fluid ft fluid ft fluid ft fluid Primary Input Variable .0178 0.8) 42.Line 215 Reynolds Number Friction Factor Pressure Drop due to friction 349.0 12.0 3.56 lb/ft3 33.4) 41.0 27.1 ft fluid 33.9 10.0 180.00015 psig psig ft ft lb/h in ft in ft ft Output Suction Pipe .79 psi Vapor Pressure Viscosity Density NPSH available Head pressure Fluid pressure Friction loss Vapor pressure reduction Total Dynamic Head Suction Pressure Head pressure Fluid pressure Friction loss Net Suction Pressure 0.9 ft fluid 10.81 cP 62.000.Problem Statement: Create a System Curve and Pump Curves at 1800 rpm Inputs Pumped liquid Temperature US Units Water 86.5 (1.636 0.0 1.211 0.Line 216 Reynolds Number Friction Factor Pressure Drop due to friction 469. 500 220.6 101. calculate the TDH at a number of flow rates then plot on a Scatter Chart This can be done by replicating the column of inputs and calculations in Column D (or Column G) several times. a simple macro can perform the task.000 100.5 45.000 80.000 150.300 175.42 ft fluid ft fluid ft fluid ft fluid ft fluid To construct a system curve.000 120.000 90.100 100.Discharge Head pressure Fluid pressure Friction loss Net Discharge Pressure 33.500 320.000 10.200 150. shown below Flow Rate kg/h 5.000 50.000 140.000 TDH m fluid System Curve 60 50 TDH.000 70.000 50.500 .500 340.0 Differential Pressure (TDH) 58.500 300.400 180.500 240. m fluid 40 30 20 3 3 4 5 7 9 12 15 18 22 26 31 36 42 48 55 Flow Rate lb/h 25. ea Or.500 200.9 21.000 30.000 20.000 110.500 280.000 130.500 260.000 40.000 75.000 60.200 125. kg/h Speed Control n q 1 n2 d1 d2 P1 n1 P2 n2 2 d1 d2 2 For the selected impeller size.000 40.6 inch.000 80. 8. construct curves at different speeds Speed.000 100.000 60.20 10 - 20. rpm 1770 1500 gpm TDH gpm TDH 25 83 21 59 50 82 42 59 1250 gpm 18 35 .000 140.000 Flow Rate.000 120. ft fluid Best Efficiency Point 100 150 200 250 300 325 350 375 400 425 1500 rpm 60 1250 rpm 40 1000 rpm 20 750 rpm 0 0 50 100 .81 79 75 71 64 61 57 53 48 41 292 279 236 197 158 118 74 65 47 32 21 12 85 127 169 212 254 275 297 318 339 360 58 57 54 51 46 44 41 38 34 29 71 106 141 177 212 230 247 265 282 300 ANSI Size 3x4 120 100 1770 rpm 80 TDH. 800.5) 7.758 0.SI Units Water 30.61 kg/m3 10.3 .5 75.26 kPa 0.gauge m m m kg/h mm m mm m m 353.0 0.818 0.81 mPa-s 992.8 m fluid m fluid m fluid m fluid m fluid 10.0 (0.4 4.0 100.0 C 4.gauge kPa .5 (0.6) (0.4) 13.0179 6.09 kPa 4.0185 144.6) m fluid 14.5 m fluid (0.0 8.25 kPa 471.0 45.0 80.4 m fluid 4.0000457 kPa . 5 325 26 48 350 44 375 400 425 450 System Curve 120 100 TDH.5 50 36 51 70 100 34 49. TDH TDH Flow Rate ft fluid reduced Leq gpm 12 12 50 15 14 100 20 18 150 26 23 200 34 30 250 44 38 300 56 47 350 58 49 360 69 58 400 81 67 439 94 77 479 108 89 519 123 101 559 140 114 599 157 128 639 176 143 679 Goulds Pumps Model 3196.5 14.5 46.8 32. each with a different flow rate.283951 18.5 30 51.45 m fluid n a Scatter Chart or Column G) several times.7 m fluid m fluid m fluid m fluid 0. Size 3x4-10 at 1770 rpm Impeller 6 7 8 gpm TDH 25 37 51.4 7.5 70.6 69 150 30.10. ft fluid 80 60 40 .5 66 200 26 43 63 250 20 38 58 300 12. 000 8 in Control Valve Pressure Drop 60 7 in 40 6 in Equiv Length reduced 20% 20 0 0 100 200 300 Flow Rate. gpm TDH 41 41 1000 gpm 14 28 TDH 26 26 750 gpm 11 21 TDH 15 15 .40 20 0 160. ft fluid 140.7 in 100 9 in 80 TDH. gpm System and Pump Curves ANSI Size 3x4-10 at 1770 rpm 120 10 in 9.000 0 50 100 150 200 250 300 350 Flow Rate. 41 39 38 35 32 30 28 26 24 20 56 85 113 141 169 184 198 212 226 240 26 25 24 23 20 19 18 17 15 13 42 64 85 106 127 138 148 159 169 180 15 14 14 13 12 11 10 9 9 7 System and Pump Curves ANSI Size 3x4-8. gpm 300 350 400 450 500 .6 inch impeller at Indicated Pump Speeds BEP System 150 200 250 Flow Rate. . 5 98.1875 58 73.5 87.25 68 10 115.6 98 65% TDH 239 238 240 241 250 260 270 279 300 325 350 375 400 gpm 110 100 90 80 68 60 57 56 59.5 54 75 0.7 102.9375 79 94 72.3 82.75 89.6 104.625 System and Pump Curves ANSI Size 3x4-10 at 1770 rpm 120 100 80 TDH.5 81 62 77.5 89 TDH 215 210 208 205 203 202 218 237 262 300 325 375 500 115 100 90 80 70 63 50 44 42 43 45.2625 83.5 105.3 86.8125 69.7 91 106. ft fluid 9 60 40 .2 103 97 94 90.1875 90.4 78.5 74.3x4-10 at 1770 rpm 9.3 90.725 87.8125 65.8 111 108.4 Efficiency 70% gpm TDH 274 275 280 285 295 303 310 325 330 360 68% gpm 110 100 96 94 90 89 89 90.3 114.5 84.9 113.5 65 73 80. ft fluid 80 8 in 60 7 in 40 6 in Equiv Length reduced 20% Min.7 in 100 9 in TDH. 20 55% Equiv Length reduced 20% 0 400 500 0 100 200 Flow Rate. gpm .40 20 0 350 400 450 500 0 50 100 150 200 Flow Rate. gpm System and Pump Curves ANSI Size 3x4-10 at 1770 rpm 2 ft 3 ft 120 10 in 60% 65% 9. . . 4 231.8 72 .9 120.Operating Point 60% gpm 55% TDH 185 181 175 168 163 160 166 175 192 212 275 360 gpm TDH 116 105 93 80 70 63 50 37 28 26 29 38 gpm TDH 360 230 275 300 325 340 17.9 112.3 463.8 98.9 115.3 360 96.375" impeller gpm TDH 0 123.6 347.5 29 stem and Pump Curves NSI Size 3x4-10 at 1770 rpm 70% 68% 65% 60% 80 5.5 21.5 24 26. 60% 55% 250 300 350 400 450 500 Flow Rate. gpm stem and Pump Curves NSI Size 3x4-10 at 1770 rpm 3 ft 4 ft 5 ft 65% 68% 6 ft 7 ft 70% 68% 65% 10 hp 7.5 hp 5 hp 3 hp 55% 300 Flow Rate. gpm 400 500 . . . 43645214 85.5 Reduce tank level54.3085 122.7298 126.3892 150.8981 102.6676 143.5 6 6.71769 181.8312 75.5 107.0651 117.4896 119.9253 100.1 13.38778 154.5 12.8303 105.30394808 129.1860465 97.1 contingency .2937 Power 8.9974 89.1 Remove piping contingency 48.5 14.6 10.5 to 0 Tank level 0 with 64.3 13.06219578 83.5 5.0279 140.1929 176.2147107 104.0744 164.7551 140.33153056 62.3 Sensitivity All at Flow Rate = 180000 lb/h Case TDH Base 58. . . . discharge length = 120 ft gpm (0.Minimum Flow w Rate = 180000 lb/h Note Suction length = 19 ft.17) (0.10 Horsepower 3 hp gpm TDH 27 50 30 115 87 150 200 250 300 330 .06) 0. . . . 5 83 69 54.5 28.5 hp gpm TDH 85 175 225 275 325 370 87 70 59.Horsepower 5 hp gpm TDH 58 46 37.5 20.5 NPSH required 2 ft gpm TDH TDH 260 325 375 438 107 85 70.5 15 7.5 38.5 48 36 25 10 hp gpm TDH 87 175 250 300 350 400 115 99.5 55 141 143 146 147 130 95 130 110 80 65 50 30 . 3 ft gpm 4 ft gpm TDH 237 230 224 223 220 185 125 100 80 60 46 25 5 ft gpm TDH 290 284 281 279 250 212 121 100 80 54 38 22 6 ft gpm TDH 337 330 328 324 300 229 120 100 80 60 43 20 7 ft gpm TDH 376 375 350 300 250 110 85 52 33 20 425 420 390 375 325 255 . . . 5 18 .TDH 100 80 60 50 34. 43 85.70 2.6 36.77 Downstream Cavitation Pressure Index psi 38.60 26.73 96 133.6 51.60 117.00 7.8 40.07 19.96 83 63.16 33.66 32.05 36.79 117.60 37.07 49.69 122.91 21.8 27.60 80.00 90.56 lb/ft3 Pressure Drop Coefficient ft fluid psi Cv 20 8.54 117.01 psia Pump TDH Upstream Pressure ft fluid ft fluid psi 83 119.5 -14. Cv = 148 Flow Rate Pump TDH System gpm ft fluid ft fluid 0 107 12 50 106 15 100 105 20 Valve Pressure Drop ft fluid psi 0.00 16.00 .10 Application and Valve Curves Installation Curve Flow Rate Pump TDH gpm ft fluid 0 107 50 106 100 105 150 102 200 99 250 94 300 88 360 80 System ft fluid 12 15 20 26 34 44 56 58 Valve Pressure Drop ft fluid psi 90.95 Coefficient Full Open Cv Coefficient 148.70 28.08 psig 218.00 96 93.3 atm 3209.75 39.02 13.93 5.60 7.11 49.85 60 26.63 9.03 99.75 39.85 21.09 64.60 117.5 37.5 58.11 117.6 37.40 Coefficient Full Open Cv Coefficient 117.43 85.97 117.47 148.05 36.95 76.29 30 13.47 117.97 148.Problem Statement: Size the control valve and create valve curves Valve Coefficient Fluid density Flow Rate gpm 360 360 250 62.93 2.60 16.03 Check for Cavitation Vapor pressure Critical pressure Flow Rate gpm 360 360 250 250 Net Suction Pressure ft fluid 36.77 14.04 4.77 117.60 53.60 Linear Globe Valve.81 31. 00 37.00 53.00 148.16 64.63 9.66 13.16 33.63 33.54 136.00 Flow Ratio 50 Coefficient Full Open Cv Coefficient 136.66 300 88 56 32.00 26.00 148.40 26.85 32.00 117.00 148.97 136.02 13.05 36.00 16.91 9.91 360 80 58 21.77 136.00 80.75 39.11 250 94 44 49.60 148.02 21.85 21.70 28.11 21. Cv = 136 Flow Rate Pump TDH System Valve Pressure Drop gpm ft fluid ft fluid ft fluid psi 0 107 12 0.60 136.40 Equal Percentage Globe Valve.09 200 99 34 64.95 150 102 26 76.09 28.79 80.00 148.00 50 106 15 90.54 117.79 136.77 53.43 100 105 20 85.11 136.00 7.47 136.70 49.11 37.150 200 250 300 360 102 99 94 88 80 26 34 44 56 58 76.00 . 59949 27.01 and Instrument Engineer’s Handbook.25 through valve 0.32 with valve located at pump discharge 0. 4th ed.46 0.956108 with valve located at pipe end 0.32.00 0.22 0.00 0.14 0.A Further reading includes the ISA recommended practice ISA-RP75.82 34.11 Installation and Valve Curves 240 Installation Curve 180 Equal Percentage Valve 120 . Cha Emerson method Engineeri ng Toolbox Max Cavitation Pressure Notes Number Ff FL Drop assuming 30 ft fluid pressure drop 0.05 0.07 0.01292 flashing if over 1 Ratio of Coefficients 0.32 0.65 0.45 with valve located at pipe end 0.53902 18. gpm Valve Lift % 0.68 1.2493 38.00 360 300 Linear Valve Flow Rate. 54 0.96 0.18 0.00 Valve Lift % 0.58 0.10 0.120 0.30 0.20 0.50 % Lift 0.36 0.27 0.70 .26 0.60 0.46 0.76 0.79 60 0 0.67 0.87 0.40 0. ngineer’s Handbook.15. 4th ed. Chapter 6. Equal Percentage Valve . 70 0.90 1.80 0.00 .0. 6 F psig psia Btu/lbF lb/ft3 gpm ft H2O Pump parameters Mfg/Model Size Impeller NPSHr Efficiency 1.6 1.0050 20.55 hp .5 m 28% Goulds 3175 3x6-14 257-95 5.952 kw 1.0 C kPa-g kPa kJ/kgC kg/m3 m3/s m H2O US Units 180.0 ft 28% Output Hyraulic power Shaft power 0.0 0.199 970.Problem Statement: Calculate the hydraulic and shaft (brake) power of a pump Inputs SI Units Inlet temperature Inlet pressure Vapor pressure heat capacity density Flow rate Head 82.2 4.0 4.274 hp 3.0 60.40 kw 4.6 52.0 7.3 65.6 79.0 27. 0 ft obtained from the pump manufacturer 70.0 F 62.4 lb/ft3 700.0 gpm 428.95 bhp .70% 75.Crane 2009 Example 7-34 60.613 hydraulic hp 106. hydraulic hp (Crane answer is 107 bhp) . 6 79.004 C 0.15 hp Output Temperature rise 0.1 kw Goulds 3175 3x6-14 257-95 5.0050 20.Problem Statement: Calculate the temperature rise through a centrifugal pump Inputs Inlet temperature Inlet pressure Vapor pressure heat capacity density Flow rate Head SI Units 82.3 65.0 0.0 C kPa-g kPa kJ/kgC kg/m3 m3/s m H2O US Units 180.0 4.6 1.2 4.0 ft 28% 0.6 52.5 m 28% 0.006994 F .0 7.6 F psig psia Btu/lbF lb/ft3 gpm ft H2O Pump parameters Mfg/Model Size Impeller NPSHr Efficiency Shaft power 1.0 27.199 970.0 60. obtained from the pump manufacturer . 275 0.4 (3.63) Output Reynolds Number Friction Factor Pressure Drop due to friction Vapor Pressure Viscosity Density NPSH available Head pressure Fluid pressure Friction loss Vapor pressure reduction 353.0177 0.6) (0.Problem Statement: Calculate the NPSH available with suction lift Inputs Pumped liquid Temperature SI Water 30.gauge 12.81 62.62 0.6) (0.87 0.81 6.4 .0) (1.0179 5.00015 for all correlations.0 0.0) (2.0 C Head pressure - Liquid height above datum Pump suction height above datum m 3.8 (12. t = deg C Vapor Pressure: log(mm Hg) = A .56 33.0 0.81 mPa-s 992.01 B 935.62 (3.4) 5.26 kPa 0.B / (t+C) A n-Butane Propane Water 6.818 0.86 861.0 kg/h mm m m 193.0 100.701.73 254.88 kPa 4.47 Viscosity: ln(cP) = A + B / (C+t) A (12.46 1.0 26.0 4.8 m fluid m fluid m fluid m fluid m fluid 375.61 kg/m3 10.0 8.6 m Flow rate Suction pipe inside diameter Equivalent length of suction pipe Roughness Property Correlations 80.79 C 238.94 8.95) 30.4) 18.200.800.46 231.0000457 US Water 86 kPa . 138.06 Atmosphere 101 kPa (14. 30 C Density: kg/m3 = m t + b m b (1.06) b 37.24 .46) 1.11 (0.089.7 psia) Friction Loss 0.02 psi psia cP lb/ft3 ft fluid ft fluid C 1.07) (0.152.35 Density: lb/ft3 = m t + b m (0.6 102.37 64.07 32.9 544.6 m (12 ft) F psig ft ft depth lb/h in ft ft Viscosity: ln(cP) = A + B / (C+t) B 13.68) 129.599.6 m H2O (2 ft H2O) Water.3.006.98 (3.08) (0.14) 600.14 (1.40) 527. 6) 13.8 ft fluid (25.Crane 2009 Example 7-34 Water 60 F 5.312 ft ft gal/m lb/h 0.37 lb/ft3 44.9 ft) .10 cP 63.0 psig 10.0) ft fluid (given) (0.0 203.2 ft fluid (Crane answer is 13.26 psia 0.0 35.0) (6.0 400. 0 2.0 0.4 3.47 Viscosity: ln(cP) = A + B / (C+t) A (12.00015 for all correlations.3 m fluid m fluid m fluid m fluid m fluid 442.95) 30.0000457 10.9 50.81 6. t = deg C Vapor Pressure: log(mm Hg) = A .0 m 8.62 (3.70 0.0201 8.140.3) 1.31 51.3 15.14 mPa-s 556.8 2.Problem Statement: Calculate the NPSH available with pressurized tank Inputs Pumped liquid Temperature Head pressure SI n-Butane 38.gauge Liquid height above datum Pump suction height above datum Flow rate Suction pipe inside diameter Equivalent length of suction pipe Roughness Property Correlations US n-Butane 100.38 218.01 B 935.94 8.0 49.79 C 238.2 8.0 C 258.4 (1.5) (216.84 kg/m3 65.700.0 kPa .85 kPa 356.2 .6) (65.4 m 1.0201 1.86 861.0 (5.315 0.46 1.46 231.4 37.5) 4.0 kg/h mm m m 19.B / (t+C) A n-Butane Propane Water 6.0 0.45 kPa 0.701.73 254.228 0.63) Output Reynolds Number Friction Factor Pressure Drop due to friction Vapor Pressure Viscosity Density NPSH available Head pressure Fluid pressure Friction loss Vapor pressure reduction 443.14 34.0 1. 35 Density: lb/ft3 = m t + b m (0.40) 527.4 psig) n-Butane 38C (100F) 2.089.08) (0.98 (3.152.07) (0.6 102.9 544.138.006.258 kPag (37.4 m (8 ft) F psig ft ft lb/h in ft ft Friction Loss 0.14) 600.06) b 37.37 64.24 .20 Density: kg/m3 = m t + b m b (1.14 (1.9 m H2O (3 ft H2O) Viscosity: ln(cP) = A + B / (C+t) B 13.11 (0.02 C 1.46) 1.07 32.68) 129.06 psi psia cP lb/ft3 ft fluid ft fluid 218.599. 21 1.53 Benzene 20 9.22 Source: CRC.Problem Statement: Calculate water hammer pressure for fast closing valve Inputs Fluid Flow Rate Pipe ID SI water 80.60 1.57 1.12E+05 32.37 Benzene.65 Glycol 25 3.449 m fluid 2.72 Pa lb/in2 1.69 1.90 0.34 Chloroform 20 9.12 1.01 0.1 Carbon disulfide 20 9.000 3 Properties Density Bulk Modulus Conversion.813 5.77 1.000 kg/m3 2.97 1.78 1.1 15 152.19 Ethyl bromide 20 12.26 Carbon tetrachloride 20 10.78 2.88 0.928. C m2/dyne x 10^11 Acetic Acid 20 9.25 0.000 4.08 0.46 1.55 1.45 n-Butyl alcohol 0 8. 50th Edition. chloro 20 7. Handbook of Chemistry and Physics.08 m/s 16.21 1.23 1.08 Acetone 20 12.17 Output convert bulk modulus units Acoustic Velocity Fluid Velocity Pressure Spike 1.1 Dodecane 60 11.28 1.75 Aniline 20 4.78 3.90 .34 1.94 1.07 1.31 1. 1969 Liquid Temp.13 3.29 1.3 Ethyl alcohol 20 11.41 1.81 0.800 kg/h 75 mm US 180.15E+09 Pa 1. gc 1.466 m/s 44.10 0.32 7.89 0.54 2.94 Ethylene chloride 20 8.4 3.03 Ethyl ether 20 18.00 m/s2 62.94 Cyclohexane 25 11.442 1.057 Time Length Pressure Spike Data 0. 9 25 0 60 60 0 20 20 20 14.42 0.82 10.47 0.19 1.18 1.4 12.42 2.06 0.70 1.98 6.26 1.03 0.98 1.02 2.05 7.94 36.20 2.47 9.9 16.90 1.47 0.05 8.39 1.18 1.24 7.34 25.58 8.00 0.96 4.65 1.55 1.62 1.71 11.12 2.20 2.n-Heptane 1-Heptanol n-Hexane 1-Hexanol Mercury Methyl alcohol Methylene bromide Methyl iodide n-Octane 1-Octanol n-Pentadecane Phenol n-Propyl alcohol Toluene Water m-Xylene 25 0 25 0 20 20 16.2 6.46 0.83 1.71 .73 1.11 6.13 1.43 8.83 1.05 16.62 3.25 1.49 1.16 1. lb/h in lb/ft3 lb/in2 ft/s2 lb/ft2 ft/s ft/s ft fluid psi s ft . T.6 6.8 Hazards 1.0 8. PAGE PROCURED BY INSTALLED BY SPECIFICATION NO. Viscosity @ P.16 BHP 10. NO P-201 REQUISITION NO.5 4. Reactor Transfer Pump 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 Fluid Service Number Required Pump Type Location Mother Liquor one ANSI AA Back Pullout Indoor Fluid Pumped Normal Flow Rate Design Flow Rate Pumping Temperature Vapor Pressure @ P.7 21.8 19.2 150 0% 45.6 79.53 Nominal Efficiency 68% Sketch 2 60 15.8 0.7 52.5 9.1 Mechanical Data Material 316SS 316SS 316SS carbon vs ceramic 304SS Suction Discharge Area Classification Power Horsepower 1-1/2" ANSI RF Case Drn.0 360. seal. or other components Provide 1-inch lip around baseplate so drips are contained Provide 3/4" hose bibb at low point of baseplate containment.O.5 41. Line Length Safety Factor in Line Loss (%) Total friction Loss Control Valve Net Suction Pressure NPSH available Total Discharge Pressure Differential Pressure (TDH) Design Flow Rate ft / psi ft / psi psia ft / psia psia ft / psi gpm Type mfg std 9. plug 1" ANSI RF Electrical Data Class 1 Group D Division Volts 460 Phases 3 Cycles Calculated 7.9 20.0 Corrosive or Non-Corrosive 360.9 27 0% 1.8 18.0 Corrosive Compounds 86.3 17.CENTRIFUGAL PUMP CLIENT REV PREPARED BY 0 1 2 DATE APPROVAL W.7 10.6 0.5 13. Specific Gravity @ P.3 30.8 non-corrosive n/a none Discharge 14.8 2.0 Pumping Conditions Suction 14.T. with cap Enclosure TEFC Frame 254T RPM 1770 . UNIT AREA EQUIP.0 Notes Motor must be non-overloading at runout Fabricated baseplate sized to catch drips from pump.0 34.T.0 Solids 0.7" diameter less sleeve Single Mechanical fabricated Pump Head Impeller Shaft Seal Baseplate Connections psia ft / psi ft / psi ft / psi ft General Pump Manufacturer Model Number Size TBD TBD 3x4-10 Process Data Water 360. gpm gpm deg F psia cP water=1 Terminal Pressure Static Head Equipment Loss (see sketch) Line Loss (per 100 equiv ft) Equiv. REQUISITION NO. & Rating Body Material Packing Material Lubricator Isolat Valve Bonnet Type Trim Form Trim Mat'l Seat/Plug Shaft Mat'l Required Seat Tightnss Max Allow Sound Level Model No. % Flash % Superheat % Solids Vap Press. & Size Type of Actuator Close at Open at Flow Action to Fail Position Handwheel & Location Mfr & Model No.O./Vessel No. NO PAGE W. Crit. gpm water psia psia psia 360 120 250 48 > 141 58 26 > 60 psia 62 40 120 F 86 F 1. Input Signal Output Signal AREA PROCURED BY FCV-216 water 216 3 inch. Oper Visc. TRAN DUCR DATE APPROVAL EQUIP. SPECIFICATION NO. Sched 40 Globe 3 in 3 in Cage 2 ANSI 150# flange Cast Iron Linear Air to close / spring open open 95 psig control at 360 gpm at no greater than 85% open OPTS SERVICE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 GENRL REV PREPARED BY 0 1 2 CLIENT FLOW UNITS Fluid Quant Max Cv Quant Oper Cv Valve Cv Valve Fl Norm In Press P Max Inlet Pressure Max Shutoff P Temp Max Operating Oper S. Wt. 17500 INSTALLED BY UNIT Tag No.81 cP 0 0 0 0. Press Predicted Sound dBA Manufacturer Model No.of Ports End Conn. Line Size/Sched Type of Body Body Size Port Size Guiding No. Service Line No.CONTROL VALVES 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 BODY ACTUATOR POSIT.00 18 0. Mol.G.62 3210 . Filt Reg Gages Bypass Input Signal Output Signal Air Supply Pressure Make & Model No.
Copyright © 2024 DOKUMEN.SITE Inc.