3Método directo de la rigidez Cálculo matricial de estructuras Guillermo Rus Carlborg Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Índice Elemento y estructura Formación de la matriz de rigidez Propiedades de la matriz de rigidez Aplicación de las condiciones de contorno Postproceso Guillermo Rus Carlborg coordenadas: Guillermo Rus Carlborg .Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Conocimientos previos Diagrama de Tonti: Discretización: Matriz de rigidez: Transf. Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Elemento y Estructura Barras Estructura Barra (C. global) (C. global) (C. local) Discretización Equilibrio Montaje o ensamblaje en nudos Compatibilidad en nudos Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Elemento y Estructura Definición de una estructura: Tipo estructural: Pórtico 2D. Articulada 3D… Coordenadas de nudos: Conectividad de barras: Material: Sección: Condiciones de apoyo: Fuerzas Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Formación de la matriz de rigidez MDR es un método de equilibrio: Incógnitas = desplazamientos u Tantas como GDL Compatibilidad Comportamiento Equilibrio en todos los GDL Sistema de ecuaciones → u Postproceso: f.p(u) Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Formación de la matriz de rigidez Incógnitas Compatibilidad Comportamiento Equilibrio en todos los GDL Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Formación de la matriz de rigidez Incógnitas Compatibilidad Comportamiento Equilibrio en todos los GDL Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Formación de la matriz de rigidez Incógnitas Compatibilidad Comportamiento Equilibrio en todos los GDL Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Formación de la matriz de rigidez Incógnitas Compatibilidad Comportamiento Equilibrio en todos los GDL Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Formación de la matriz de rigidez Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Formación de la matriz de rigidez Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Formación de la matriz de rigidez Genéricamente: barra b={i→j} Ejemplo: c={2→5} Guillermo Rus Carlborg . reciprocidad Guillermo Rus Carlborg .Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Propiedades de la matriz de rigidez Simétrica D Th. Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Propiedades de la matriz de rigidez Sólo hay que ensamblar Simétrica y almacenar la mitad de la banda central En banda GDL no conectados: Depende de la numeración: Existen técnicas más sofisticadas: skyline Bien Mal (48x9) (48x48) Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Propiedades de la matriz de rigidez Simétrica En banda No estricto Diagonalmente dominante Consecuencia: el sistema está bien condicionado numéricamente Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Propiedades de la matriz de rigidez Simétrica En banda Diagonalmente dominante Definida positiva: autovalores >0 (después de aplicar las condiciones de contorno) D porque el trabajo es >0 Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Propiedades de la matriz de rigidez Simétrica En banda Diagonalmente dominante Definida positiva El orden y orientación de las barras no altera K Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Aplicación de las condiciones de contorno Reagrupar ecuaciones y despejar: Fuerzas Incógnitas Reacciones Apoyos Desplazamientos Resolver: Reacciones Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Postproceso Determinación de esfuerzos en los elementos p: Una vez conocido u. y por tanto δ: Determinación de las reacciones Opción 1: a partir de p’ Opción 2: a partir de uM: Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Resumen Elemento y estructura Matriz de rigidez Propiedades Condiciones de contorno Postproceso Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Práctica 1 Guillermo Rus Carlborg . Elemento y Estructura Matriz de Rigidez Propiedades Condiciones contorno Postproceso Práctica 2 Guillermo Rus Carlborg .